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Abstract. We consider the dynamical theory for spin glasses developed by Sompolinsky, 
Hertz and others. The additional relations between the freezing parameters and the 
anomalous response parameters in their theory are considered. We compare the dynamical 
theory with the probability distribution method of the overlap of the magnetisation between 
two different states. Finally we discuss the susceptibility of the spin glass in an AC field 
with a small finite amplitude, and the results explain the experimental results qualitatively. 

1. Introduction 

We concentrate on the model with an infinitely long range random interaction to study 
the properties of spin glasses, and we call it the SK model (Sherrington and Kirkpatrick 
1975). The Hamiltonian is given by 

where the sum 
obeying the probability distribution 

runs over all pairs of spins, and the J ,  are random interactions 

P ( J ~ )  = (N/~TJ’)’’’ ~ x ~ ( - J $ N / ~ J ’ )  ( 2 )  
where N is the number of spins. 

The SK model has been studied by the replica method in detail (Edwards and 
Anderson 1975). First Shemngton and Kirkpatrick (1975) presented the replica sym- 
metric solution (we call it the SK solution), but this solution was proved to be unstable 
in the spin glass phase (de Almeida and Thouless 1978). In order to obtain the stable 
solution symmetry breaking in the replica space is required. It is believed that the 
Parisi replica symmetry breaking scheme (Parisi 1980a, b) gives the stable solution of 
the SK model (Thouless et a1 1980, De Dominicis and Kondor 1983). We call it 
the Parisi solution. The order parameters in the Parisi solution are expressed by the 
function q ( x )  where the parameter x is changeable from 0 to 1. But within this theory 
we have some questions: what is the physical meaning of the replica symmetry breaking, 
and what is the physical meaning of the parameter x?  In order to study these questions, 
two main approaches have been used. The one is the dynamical theory of the SK 
model which has been developed by Sompolinsky (1981), Hertz (1983a, b) and others. 
The other is the approach by studying the probability distribution of the overlap of 
the magnetisation between two different states (Parisi 1983, De Dominicis and Young 
1983). These approaches are based on the concept which says that there are many 
metastable states in the spin glass phase (Bray and Moore 1980, 1981, De Dominicis 
et al 1980), but the relationship between these approaches is not clear. We try to 
consider the relation between these approaches in this paper. 

0305-4470/85/183475 + 16$02.25 @ 1985 The Institute of Physics 3475 
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In this paper we consider the dynamical theory of the SK model. We mainly follow 
the Hertz method (Hertz 1983a, b), but it was difficult to determine susceptibilities in 
his theory. Therefore in 0 2,  we present a model with no obscurity and review the 
Sompolinsky and Hertz discussions. The dynamical theory gives the equations for the 
relationship between freezing parameters (Edwards and Anderson 1975) and 
anomalous response parameters (Sommers 1978). In order to determine these para- 
meters, other additional relation equations are required. In $ 3, we consider the 
additional relationship equations (Sompolinsky (1981) presented those which lead to 
the Parisi solution, but had no further consideration of it, and Hertz (1983b) discussed 
it, but I could not understand Hertz’s discussion). In 0 4, we consider the Parisi 
probability distribution P (  q )  of the overlap q from the viewpoint of dynamical theory. 
In 0 5 ,  we discuss the susceptibilities in the spin glass, especially the AC susceptibility. 
It is discussed how a static uniform field can affect the static freezing parameter q ( x  = 0) 
and an AC uniform field with a long cycle time can affect the dynamical freezing 
parameter q ( x  = 1) which connects with the anomalous response parameter through 
the fluctuation-dissipation theorem (FDT). In a previous paper (Shirakura 1984a), we 
discussed the susceptibilities of the spin glass in a static small field. In this section 
we discuss the susceptibility of the spin glass in an AC field with a small but finite 
amplitude. Section 6 presents the discussion of the results. 

2. The Sompolinsky and Hertz dynamical theory in the spin glass 

The SK model (equations (1) and ( 2 ) )  has Ising spins a, = *l. Here we consider that 
the system has Langevin-type dynamics. Therefore we add the weight part W ( u )  to 
the Hamiltonian 

I j = H s , + W ( u )  (3) 

W ( u )  = Qu (af- 1)* (4) 

and we consider the spins to be changeable from --a3 to 00 continuously. If we take 
the limit U +=a, we have Ising spins such as 

When U # CO, we put a constraint X, af = N. This constraint removes the obscurity of 
the determination of susceptibilities in the Hertz theory. The partition function with 
this constraint is given by 

?cI 

Z = 5 n daiS( N -c a?) exp(-pfi)  
--cc 1 I 

where 
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The y integral can be found by steepest descents in the thermodynamic limit N + W. 

The saddle point equation is given by 

( d e f i  = N (8) 

where 
03 m 

(. . .)efi’ 1 -m n I d u , . .  . exp( -PHd(  { -a n I du, exp(-PHefi))-’. (9) 

Let P ( { u l } ,  t )  II, du, be the probability of finding the system in the area II, da ,  at { U , }  

and at time t. We consider the simplest Langevin-type equation of motion to be 
P({ut}, t )  a exp(-PHeff) for a stationary probability distribution, as follows: 

(10) du, /dt  = -yo dH,fi/dt + T,( t )  

( ~ i ( t ) T j ( t ‘ ) ) = 2 T y o S i j S ( t - t ’ ) .  

The r in Heff is determined by (8), as follows: 

[ ( d ) I a  = 1 (12) 
where [. . .I, denotes the random configurational average, and the Langevin noise 
average is denoted by (. . .). 

[ ( a t ( w ) ) I a =  

and the correlation functions 

We concentrate on the response function G,(o): 

G,J(w)h ; (w)+  (other terms except for the first order terms of h*) (13)  
J 

cZJ(0)2.rrS(w + = [(‘Z(u)gJ(w’)la- [(al(w))(uJ(w’))la (14a) 
.rr6 ( + ’1 = [((+I ( uJ ( w ‘ ) ) l a  (14b) 

(15)  

where we write 

h: is an infinitesimally small field to observe a response and H is a uniform external 
field. When H = 0, G, with i # j is zero. When H # 0, G, with i # j  has the magnitude 
O ( ( l / N ) ’ ,  H 2 ) .  Therefore we concentrate on the diagonal terms GI,, C,, and e,, 
only. For simplicity we drop the subscripts, i.e. G = GI,, C = C,, and e = &. The G 
and C are related by the fluctuation-dissipation theorem (FDT) (Ma 1976) 

h, = 6, + H. 

C ( w )  = ( 2 T / w )  Im G ( w ) .  (16) 
Here we consider the approximation discussed by Hertz (1983a, b). We consider 

H = 0 ,  and G ( w )  and & ( w )  are calculated from the equation of motion (10) at the 
self-consistent two-loop level for the term buaf  and to lowest order in 1 /  N, as follows: 

G - ’ ( w )  = G,’ (w)+C ( w )  = r - i u / y , + c  ( w )  

e(w)  = G ( ~ ) A ( ~ ) G ( - ~ )  (18) 
(17) 

oc 

-(9u2/2) [ ( d w ’ d w ” / ( 2 r r ) ’ ) ~ ( w ’ ) e ‘ ( w ” ) G ( w  - -w’ -wf ‘ )  
J -m 

02 

A ( w )  = 2 T / y O + J 2 ~ ( w ) + ( 3 u 2 / 2 )  [ ( d o ’ d w “ / ( 2 . r r ) 2 ) ~ ( w ’ ) e ( w ” ) e ( w - w ’ - w “ ) .  
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First we consider :he SK solution in this model. In the spin glass ( S G )  phase the 
correlation function C(t) has a time persistent part: 

lim C( t )  = 0. (21) 
t-m 

& ( t ) = C ( t ) + q  

We call the magnitude of the time persistent part of e( t )  a freezing parameter. With 
the Fourier transform of (21), we have 

& ( U )  = C(w)+q2?78(w). (22) 

We consider that G(w) and C ( w )  are related by the FDT (C(w)=(2T/o ) Im G(w)) .  
The static response G ( w  = 0) is calculated from the FDT, the Kramers-Kronig relation 
and equations (12) and (21), as follows: 

(23) 

The determinationAequation for q is given by picking out the part proportional to the 
~ ( w )  function in c = G ( ~ ) ~ ( ~ ) G ( - ~ ) ,  as follows: 

G ( w  =0)  = ( l / T ) C ( t  =0)  = (1/ T ) ( e ( t  = O ) - q )  = ( l / T ) ( l - q ) .  

q = G 2 ( w  =O)[J2q+(3u2/2)q3]. (24) 

But it is shown (Hertz 1984a) that this solution is unstable in the SG phase. In the SG 
phase we have the negative effective kinetic coefficient y(w = 0) < 0 which shows the 
instability of this solution, where y(w) is defined by 

y-'(w) = (G- ' (  - U )  - G-'(w))/2iw. (25) 

To obtain a stable solution Hertz (1983a) presented the next %elution (we call it 
the Hertz solution). First, instead of (22), the correlation function C ( w )  is rewritten as 

& ( U )  = C(w)+2qE(w2+ E2)-' E<<  y,T (26) 

in a finite system, where the S function in & gets smeared out. The q decays with a 
reiaxation time T =  E - ' .  We consider that G ( w )  and & ( U )  are related by the FDT 

( C ( w )  = (2T/w) Im G(w)) .  Then we have 

~ ( w )  = G ( w )  + &(-iw + E ) - '  

s ^ = q / T  c ( w )  = (2T/w) Im 6 ( w ) .  (28) 

(27) 

The second term in ',he right-hand side in (27) is an anomalously slow-time response 
t,erm, so we call the S an anomalous response parameter. In the He;z solution, q and 
6 are related by the FDT (equation (28)). In the SK solution we have 6 = 0. In a similar 
way to deriving (23), we have 

d ( w  = 0) = (1 - q ) /  T. (29) 

The determination equation for q is given by integrating & ( U )  = G(w)i (w)G(-w)  
over w between - w l  and w l ,  where y,T >> w 1  >> E, and we have 

q = ( l  - q + q 2 / 2 ) [ J 2 q + ( 3 u 2 / 2 ) q 3 ] / T 2 .  (30) 

This solution is stable for a short timescale t<< E- '  in the SG phase (Hertz 1983a). 
Hertz discussed the possibility that this solution describes the short time properties 
(the ZFC susceptibility, etc) of the spin glass better. 

The solution which is stable for a long timescale in the SG phase was first discussed 
in the dynamical theory by Sompolinsky (1981). He assumed that in a finite system 
the decay of the freezing parameter occurs in a distribution of many large relaxation 
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times (all of which become infinite in the thermodynamic limit). In this situation & ( U )  

is written as 
A e(") = C ( w ) +  c qJ[2&,(O2+ &;)-I] 

j = l  

where we assume E ; '  >> E;' >> . . . >> E;'. q1 is the magnitude of freezing which comes 
from the largest spin cluster with the longest relaxation time and q A  is the magnitude 
of freezing which comes from the smallest spin clusters with the shortest relaxation 
time. The anomalous response term in G ( w )  is similarly divided into fi parts, as 
follows: 

* *  
G ( w )  = G ( w ) +  tj,&,(-iw+q-'. (32) 

We assume that the finite time parts G ( w )  and (?(U) in the thermodynamic limit 
N + a  are related by the FDT. In a similar way for deriving (23) and (29), we have 

j = 1  

A set of relations between {Q} and {&} is obtained from integrating &(a)= 
G ( w ) A ( w ) G ( - w )  over w between -U, and U,, where E,<< wj<< E ~ + ' ,  j = 1 , .  . . , N, as 
follows: 

n = I , .  . . , IG (34) 

Another set of relations between {q,} and { h }  is required to obtain solutions for {q,} 
and {J j } .  If we assume 

7.4 = ( j / f i ) q ,  

n / N = x ,  c e = d x n )  

j = 1, . . . , KJ 
and take the continuum limit &+ CO 

1 n 

] = I  

we have the Parisi solution (Sompolinsky 1981, Hertz 1983b): 

(37) 

dq(x)/dx=[G(O) - S ^ ( X ) ] ' [ J * + ( ~ U ~ / ~ ) ~ ~ ( X ) ]  dq(x)/dx (34') 

G(0) = ( 1  - q( 1))/ T +  8( 1)  (35') 

T$(x) = [ q ( x )  - q(x')] dx'. 1: 
In the next section we consider the relations (36). 
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3. The consideration for the additional relations between freezing parameters and 
anomalous response parameters 

In this section we consider the additional relations between freezing parameters and 
anomalous response parameters. In a finite system we write a static susceptibility as 
follows: 

where 6h is a uniform static field which becomes zero in the thermodynamic limit N + 00. 

First we discuss the case of pure ferromagnets. In the ferromagnetic phase the free 
energy plotted against magnetisation m = (ai) is shown in figure 1. It has two minimum 
states. In a field ah, the probability to stay in one state depends on the Boltzmann factor 

In the ferromagnetic phase we have X i  (aj) = Q( N ) .  Therefore if we take 6h = O( T I N ) ,  
the mixing between two minimum states in a long timescale is forbidden. We consider 
that the anomalous response comes from mixing between states. Therefore the 
anomalous response should not be included in the ferromagnetic mean-field theory. 

Figure 1. The free energy plotted against magnetisation m =(ai) in the ferromagnetic phase. 

Next we discuss the case of a spherical spin glass (Kosterlitz et al 1976, Nemoto 
and Takayama 1984). The model in 0 2 expresses the spherical spin glass when U = 0. 
In the spherical spin glass the replica symmetry breaking (RSB) does not occur and 
the SK solution is stable at all temperatures. We can discuss the spherical spin glass 
in a similar way to the case of pure ferromagnets. We can consider that there is one 
spin cluster over a whole system in the SG phase of the spherical SG, and the magnitude 
of its total magnetisation is of the order of NI’* on average, i.e. X i  (ai)= O(N112) .  
Therefore if we take 6h = O( T / N 1 1 2 ) ,  the mixing between minimum states in a long 
timescale is forbidden. So we do not have the anomalous response (we can see that 
(34) and (35) with U = 0 are the exact equation of state for the spherical SG (Kosterlitz 
et a1 1976) if we take 41 non-zero and all other parameters zero). 

Finally we discuss the case of the SG with U # 0. The situation is quite different 
from the spherical SG.  In the present case there is a constraint on the magnitude of 
each spin at each site. This constraint causes the frustration effect. Therefore we have 
a distribution of various sizes of spin clusters. We distinguish between these spin 
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clusters by its relaxation times E ; ~  >> E; ‘  >> . . . >> E%’. We consider that the spin cluster 
with a relaxation time E,’ has magnetisation m, on average. The probability for the 
mixing between an up state m, and a down state -m, of the spin cluster with a 
relaxation time E; ’  in a long timescale is given by 

U,  = exp( -PGhm,)[exp( -PShm,) + exp(PShm,)]-’ n = 1 , .  . . , A (40) 

in a field 6h. We consider several trial considerations. 
(i) If we could have a field Sh which forbids any flip of any spin cluster, we do 

not have any anomalous response C$ = 0, j = 1, . . . , In this case we have dq(x)/dx = 0 
in (34’), (35’) and (36’), and this solution is reduced to the SK solution. 

(ii) If any field Sh (which becomes zero in the limit N +  CO) could not forbid any 
flip of any spin clusters,*freezing parametfrs and anomalous response parameters are 
related by the FDT, i.e. TS, = q,, j = 1 , .  . . , N. But in this case we also have dq(x)/dx = 0 
in (34’)-(36’), and this solution is reduced to the Hertz solution. 

Here we consider that the largest spin cluster with the longest relaxation time E; ’  

has magnetisation m1 = O( NIi2 )  similar to the case of a spherical SG, and the smallest 
spin clusters with the shortest relaxation time E 3’ have magnetisation mfi = O( l), i.e. 

ml 2 O( N”’) 

(41 1 
mfi = O( 1). 

We take 6h = O( T/N”’) similar to the case of the spherical SG.  Then the Sh forbids 
the flip of the largest spin cluster, Ti*, = 0. On the contrary, the smallest spin clusters 
have flips freely in a long timescale, and we have T6fi = qfi by the F,DT. 

(iii) If we assume T& = 0 for 1 “ - j  “- n and T&A= q, for,n + 1 sj s N, this solution 
is reduced to the solution with two parameters ( TS1 = 0, TSfi = qf i )  only. It is shown 
that this solution corresponds to the solution presented by Sommers (1978). We call 
it the Sommers solution. 

(iv) The yarisi s2lution is obtained by connecting linearly between Ti ,  = 0 and 
T i f i = q f i ,  TG,=(j/N)q,, j = 1 ,  . . . ,  A. 

These discussions suggest that the Parisi parameter x, = j / k  may be related to the 
probability of the mixing between an up state m, and a down state -mJ of the spin 
cluster with a relaxation time E,-‘ in a long timescale in a field 6h 2: O( T/ NIi2) .  

4. Considerations for relations between the dynamical method and the probability 
distribution method of the overlap of magnetisation 

In this section we consider the probability distribution P ( q )  of the overlap of the 
magnetisation between two different states from the standpoint of dynamical theory. 

First we simply review the idea presented by Parisi (1983) and De Dominicis and 
Young (1983). From the suggestions of the computer simulation for the SK model 
(Mackenzie and Young 1983) we have the simple picture of the free energy structure 
plotted against phase space in the SG phase such as shown in figure 2 .  As shown in 
figure 2,  we have a barrier with a height O( NI”) which separates states with the same 
sign of total magnetisation and other states with the inverse total magnetisation. We 
assume that the mixing between any former state and any latter one never occurs in 
physical observation times. Therefore we concentrate on the states on one side where 
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F 

t 

Figure 2. The free energy plotted against phase space in the spin glass phase which is 
suggested by the computer simulations (Mackenzie and Young 1983). 

there are barriers with height O(Nii4) .  We assume that the states on one side can be 
mixed in a long timescale. We consider that the state a occupies the phase space R, 
and has local magnetisation { m y } .  In a short timescale, we have a magnitude of freezing 

qEA=[;Pu(mr)2] (42) 

where pu = Trn, exp( - P H ) / n ,  Trn, exp( - p H ) .  In a long timescale, we have a magni- 
tude of freezing 

4 = [ ( pum :) ’1 a (43 1 

Here we consider the probability distribution F (  q )  of the overlap of the magnetisation 
between two different states defined by 

It is considered (De Dominicis and Young 1983) that 4 is equal to I i q ( x ) d x  
( ={A q(dx(q)/dq) dq)  in the replica symmetry breaking scheme. We notice the corre- 
spondence P (  q) + dx(q)/dq. 

The above discussion has two steps: a barrier with its height O( N1”) and barriers 
with height O( We notice that this discussion is similar to the one of (iii) in 9 3 
which leads to the Sommers solution. If we want the discussion which leads to the 
Parisi solution, we have to consider a hierarchical structure with infinite steps such as 
suggested by the discussion of (iv) in 9 3. It should be noticed that a hierarchical 
structure has been discussed by the replica symmetry breaking scheme (Mtzard et a1 
1984). 
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Here we consider a hierarchical structure with four steps for simplicity. As shown 
in figure 3, we describe a partial phase space such as il,,, . . . , ilsIs2sJs4, sl,.  . . , s4=  * 
and Pl(sl), Pl(sl)Pz(sl, sz), . . . are defined by 

pl(sl)  = TrnSl exp(-PH)/n  Trnzl exp(-PH) 

Pl(sl)pdslsJ = Trnily2 e x p ( - P W / n  Trnsl exp(-PH) 

51 

81 

So we have 

P,( + )  + P,( - )  = 1 

Pz( s, + ) + P2( s, - ) = 1 (47) 

We describe the local magnetisation in partial phase spaces such as ( misl}, { misls2}, . . . . 
We have the following relations 

Figure 3. The free energy plotted against phase space in the spin glass phase which has a 
hierarchical structure with four steps. 

4.1.  The case with no symmetry breakingjield (Sh = 0 )  

We determine the behaviour of e ( w )  from the case Sh = 0. The model is symmetric, 
so we assume 
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We describe the local magnetisation in this case such as { fiisl}, { misIs2}, . . . , We assume 

We have the change of the magnitude of freezing 

[fi?sIs2s3s41a _I_ [fi?sIs2s31a- E 3  [fi?s,s,Ia- E 2  [ f i?s l Ia-  0 
€ 4  

following the change of the observation timescale E ; ’  >> E ; ’  >> E ; ’  >> E: ’ .  We write 
x4 j = l  qJ = [ m~sls2s3s4]a, Z,=, q, = [ fitsls2s3]a, . . . , and we have the correlation function 3 

4 

& ( U )  = C ( W ) +  q r 2 E j ( W 2 +  E ; ) - ]  
J = 1  

where C ( W )  varies with frequency on the scale of microscopic rates (Ty , ) .  

4.2. The case with a symmetry breakingfield ( S h  =O( T /  NI / ’ ) )  

We describe the local magnetisation and the magnitudes of freezings in a field S h =  

symmetry between states is broken, so we assume 
O( , /NI / ’ )  such as { f i l s , ) ,  {hls,s2), . * . , and 61 = [ h ? s , I a ,  x.f=l 61 = [ ~ f s , x 2 1 a ~  . . . . The 

4 s1s2s3+) =; 
P4( s1s2s3-) = ; 

( 5 2 )  

We assume hlsIs2s3s4 - filS1S2s3s4. Using (48) and (521, {r%,,>, {hlsIs2}, . . . , are described 
by {fiIsI), {filsls21, . . . . Therefore G I ,  8, . . . , are described by q l ,  Z:=l q,, . . . , as 
follows: 

r ( p3( s 2 + )  = p3 { P2(s1-) = 1 - p 2  I p3(sls2-) = 1 -p3 
P2(S l+)  = p 2  Pl(+) = 1 

P1( - )=0  

1 > p 2 > p 3 > $ .  

{ 
- 

E ; ]  << t.  

( 5 6 )  

We assume that ( r F ~ ~ + + + f i ~ + - + ) ~  = ( r F ~ ~ + + - r i i ~ + - - ) ~  similar to the assumption (50). There- 
fore the fourth term on the right-hand side of (56) is zero. The third term on the 
right-hand side of (56)  is the fluctuation term of q3. This term will become zero when 
I?, which is the number of steps of a hierarchical structure, becomes infinity. The 
magnitude of an anomalous response parameter in is given by the difference between 
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the magnitude of freezing in a timescale t, and that in a timescale t , - l  in a field 
Sh =r O( T /  where E,::~ << tj << E,:’, as follows: 

A 

T64 = 94 

ri3 = 4 ~ ~ 1  - p 3 ) q 3  

Ti2  = 4p2(l - p 2 ) q 2 +  (the fluctuation term of q3)  
A 

T6, = 0. 

We have the response function 

(57)  

where (?(U) = ( 2 T / o )  Im e ( w ) .  
We extend the above discussion to th5case of a hierarchical structure with A steps. 

If the fluctuation terms of q,, j = 1,  . . . , N, can be neglected for a large enough A, we 
have the relations 

TS;.=dp,(l-p,)a j =  I , .  . . , A (59) 

where 

1- 2 - P A  < P A - ]  <. . .<PI = 1. (60) 

The 4p( 1 - p )  changes monoto;ically from 0 to 1 when p changes monotonically from 
1 to 1. Therefore in the limit N+m, we can put 

k c q, = q ( k / f i )  = q(xk). 
j=l 

We can see that the 4p(l - p )  corresponds to the Parisi parameter x. The magnitude 
of freezing in a field 6h + O( TIN1’*)  is given by 

in an infinitely long timescale. We conclude from these results that the probability 
distribution F ( q )  of the overlap q presented by Parisi (1983) is interpreted as the 
weight function when G1 is expressed by using the magnitude of freezing q, in the 
symmetric case (figure 4 )  from the standing point of the dynamical method. 

Figure 4. The probability distributions of the overlaps q, 4. (a)  The probability distribujion 
P ( q )  of the overlap q in the symmetric case Sh = 0 ,  (6)  the probability distribution P ( 4 )  
of the overlap 4 in the symmetry breaking case Sh = O( T /  (see the appendix), ( c )  
the weight function P ( q )  when 4, is expressed by using q in the symmetric case Sh = 0. 
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5. The AC susceptibility of the spin glass 

In this section we discuss the spin glass in a finite small field H which is not zero even 
in the thermodynamic limit N + CO. 

To treat the time dependence of H, we consider physical quantities with no time 
translational invariance. Substituting (7) into (lo), we have 

a,(t)= 7 7 , ( t ) / y o + 6 , ( t ) + H ( t ) - f u a : ( t ) - C J ~ a j ( t ) .  
j 

(63 1 
Using Go(?, t ’ )  defined by 

Go( t, t ’ )  = 6( r - t ’ )  (64) 

(63) is rewritten as follows: 

i 1 7i ( t ’ )/ yo + 6, ( t ’) + H ( t ’) - tug:( t ’) - Jijaj ( t ’) . 

crom (65) we can calculate the response function G( t, t’) and the correlation function 
C ( t ,  t’) in the same approximation as in § 2: 

00 

[ ( ~ ; ( t ) ) ] , =  G(t,  t ’ ) l i ( t ’ )  dt’ I_, 
+ (other terms except for the first order terms of 6) 

G( t, t ‘ )  = Go( t, 1’) - l - l d t ~  [-:dl2 GO(?, c ( h ,  f2)G(f2, t ’ )  

C ( t ,  t ‘ )  = -J2G( t, t ’ )+ i~e(  t, t ) 6 ( t  - t ’ )  - (9u2/2)e2(t ,  t‘)G( t, t ’ )  

J - m  J-00 

(67) h(t, t‘) = H (  t )H(t’)+(2T/y0)6(  t - t ‘ )  + J 2 & ( t ,  t‘) +(3u2/2)e3(t ,  t’). 

We consider that H ( t )  is an AC field with frequency 0,. For simplicity we assume 
that H (  t l ) H ( f 2 )  is dependent on the difference t ,  - t2 only, as follows: 

H (  t l ) H (  f 2 )  = H 2  COS[O,( t l  - t 2 ) ] .  (68 )  

After making this assumption, we canA consider that G( t, t ’ )  and e( t, t ’ )  have time 
translational invariance, i.e. G( t - t ’ ) ,  C (  t - t‘). Performing the Fourier transform for 
t - t’ in (66) and (67), we have (17)-( 19) and 

A ( w )  = H 2 v [  6( w - U,) + 6( w + w, ) ]  + 2 T /  yo+ J 2 e (  w )  

a, 

+(3u2/2) I-, ( d w ’ d ~ ” ( 2 v ) - ~ ) e ( w ‘ ) e ( w ” ) e ( w - w ‘ - ~ ” ) .  (69) 

With a fixed w, we can derive the relation equations between (4,) and {h}  in a similar 
w,ay to deriving (34). We assume that the other additional relations between {q,} and 
(6,) are given by (36) even in a finite external field. 
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When w, = 0, H is a static field. In this case only the equation with n = 1 in (34) 
is changed, as follows: 

q1 = G 2 ( 0 ) [ H 2 + J 2 q l + ( 3 u 2 / 2 ) q : ]  (70) 

(for n = 2, .  . . , 2, (34) still holds), where G(0) is given by (35) and we consider & 
large enough, so we neglected small quantities O( 1/ i). These equations have been 
obtained in a previous paper (Shirakura 1984a). In that paper the susceptibilities 
(xFC, xZFC) in a static field were discussed from (70). In the Hertz solution in a static 
field we consider that the field H induces the freezing ql, and the random interaction 
induces the freezing qf i  only. Noticing the Sommers solution to have q1 and qfi only, 
we cannot distinguish between the Hertz solution and the Sommers solution in a static 
field. 

Next we consider that e( t )  is an AC field with frequency ma= E fi. In this case 
only the equation with n = N in (34) is changed, as follows: 

(71) 

(for n = 1, . . . , 6 - 1, (34) holds). 
The magnitude of freezing induced by the external field is non-zero at all tem- 

peratures. The phase transition occurs by the freezing of other components. In a static 
field the field H induces the freezing q l .  The determination equations for q,, j =  
2, .  . , , 2, include ql.  Therefore the transition temperature depends on the field H. It 
was shown (Sompolinsky and Zippelius 1982, Shirakura 1984a) that the transition 
temperature is given by the de Almeida-Thouless line (de Almeida and Thouless 1978). 
In an AC field with w a s  E A  the finite amplitude H of the field induces the freezing 
qfi .  But the determination equations for q,, j = 1 , .  . . , N - 1, do not include qf i .  
Therefore the transition temperature does not depend on the amplitude H of the AC 

field. 
Next we discuss susceptibilities. The susceptibilities in a static field were discussed 

in a previous paper (Shirakura 1984a). In that paper we considered that the zero field 
cooled (ZFC) susceptibility xZFC is obtained from the Hertz solution which is stable 
in a short timescale, and the field cooled susceptibility xFC is obtained from the Parisi 
solution which is marginally stable in a long timescale. Here we consider the Hertz 
solution in an AC field. In the Hertz solution we assumed that the random interaction 
induces the freezing qfi  only, but now the amplitude H of the AC field with w a s  ~ f i  

induces the freezing qk.  Therefore we assume that the random interaction induces 
the freezing qf i - l  only and take the limit fi-;’co. Then we have the next solution: 

4 r i i - i ~  [G(wfi -2)G(wfi - i )  + ( q G - i /  T)2/21[J2qfi-~ + (3u2/2)qh-il 

qfi=[G(wfi-i)G(wriis)+(qfi/  Tl2/2I 

x [ H 2  + J2q  fi + (3 u 2 / 2 )  4% + ( 9u2/2) q fi- q2 + (9u2/2) qk- q] (72) 

G ( ~ G - ~ )  = I /  T G(UG-1) = (1 - q A - l ) /  T G(o fi) = ( 1  - q G - 1 -  qfi ) /  T 
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We consider that the AC susceptibility with a finite amplitude H is given by G ( w f i ) ,  
i.e. xAC = G ( w f i ) .  For simplicity we put J = 1. The transition temperature T, is given 
by T, = 1. Near the transition temperature, xAC is given by 

where T G  1 - T. xAC is shown in figure 5 with xZFC and xFC (Shirakura 1984a) for 
comparison. xAC( H f 0) is rounded inside the cusp of the xAC( H = 0) = xZFC( H = 0). 
This result is often observed in many experiments. 

G ' H '  1 
T 

Figure 5. The plots of susceptibilities against temperature at H = 0 and H # 0. xzFc and 
xFc are the ZFC and FC susceptibilities, respectively (Shirakura 1984a) and ,yAC is the AC 

susceptibility. 

We should notice that all the E, become zero in the thermodynamic limit N + 00. 

Therefore the theory in this paper can not give the real timescales in experiments. But 
the results in this section suggest that the reason the temperature dependences of AC 

susceptibilities in SG materials are rounded inside the cusp as the amplitude H of the 
AC field is increased is explained by the result that the AC field induces the freezing 
of clusters with the same relaxation time as the cycle time of the AC field, and the 
reason that the cusps of the zero field cooled susceptibilities in SG materials are shifted 
to lower temperatures as the static field H is increased is explained by the result that 
the increase of the static field H shifts the transition temperature to lower temperatures. 
On the other hand, Fischer (1983) and Fischer and Kinzel (1984) discussed the AC 

susceptibilities with an infinitesimally small amplitude in a static external field H and 
presented interesting results. 
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6. Discussion 

In the previous section we assumed that xZFC and xAC are obtained from the Hertz 
solutions and xFC is obtained from the Parisi solution. Some papers insist that xZFc 
is obtained from the case x = 1 in the Parisi solution and xFc is obtained from the case 
x=O in the Parisi solution, but we do not think so. We consider that the difference 
between the cases x = 1 and x = 0 in the Parisi solution is the difference between the 
observation timescales, but the difference between xZFc and xFC is the difference 
between the observation times from the put-on time of the field H after zero field 
cooling. Therefore this is a non-equilibrium phenomenon. At a short time from the 
put-on time when we observe xzFc, all spin clusters behave dynamically to proceed 
to a new equilibrium state. Therefore we have the Hertz solution in this case. At a 
long time from the put-on time the system becomes an equilibrium state in the field 
H. In this case we have the Parisi solution, and we can select the case x = 0-1 following 
the observation timescale. 

Next we discuss the free energy structure in a static external field H similar to the 
one in 0 4. We assume that the symmetry breaking field 6h which is static, uniform 
and infinitesimally small in the limit N + CO changes the mixing probabilities between 
states and the static uniform external field H changes the free energy structure itself, 
and we can distinguish between the symmetric case ( 6 h  = 0) and the symmetry breaking 
case ( 6 h  = O( T /  N”’)) even in the field H below the de Almeida-Thouless line. In 
a small field H we consider the similar free energy structure to the one in §4. We 
consider that the symmetric case on the field H has the next mixing probability { p j } .  

pj = 1 
-1 - 2  

j =  1,. , . , n 

j = n + l , .  . .  , k 

where we assumed the hierarchical structure with k steps. We consider that the 
symmetry breaking case in the field H has the following mixing probabilities {$J} :  

$, = 1 

= PJ 

j = l , .  . . , n 

j =  n + l , .  . . , k 

where pJ is related to the Parisi parameter xJ through (61 ) ,  and if the F-T hypothesis 
holds (Parisi and Toulouse 1980), n depends only on the field H and k depends only 
on the temperature T. Thus we can repeat the discussion in a similar way to § 4. 

Finally we discuss the symmetry breaking field ah. In this paper we consider 
6h = O( T /  N ” 2 ) ,  but we may probably have some arbitrariness of the magnitude of 
6h. We think that this arbitrariness may be related to the arbitrariness of f ( x )  ?here 
f ( x )  is defined by the additional relation equation between $(x) and q ( x ) ,  T 6 ( x )  = 
f ( x ) q ( x ) .  In the previous sections we fix f ( x )  = x, but f ( x )  can be some arbitrary 
function which is continuous and monotonously increasing, and satisfies f ( x  = 1) = 1 
and f ( x  = 0) (Sompolinsky 1981, Horner 1984a, b). 
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Appendix 

The probability distribution c(q) of the overlap q in the symmetric case Sh = 0 and 
the probability distribution P ( 4 )  of the overlap 4 in the symmetry breaking case 
Sh = O( T/ N1l2) is found. 

We consider the probability distributions P(q), @(4) of the overlaps q, 4 of the 
magnetisation between two states in the symmetric case Sh = 0 and i n  the symI;fletry 
breaking case Sh = O( T /  NI/*). y e  consider Yq = jt dq’ P( q’) and Y ,  = dg’ P( 4‘). 
We can easily calculate Yq and Y ,  such as 

In the continuum limit f i + q  we haveAP(q) = 61q) and @(g) = S ( 4  - il), because if 
x # 0, we have Yq(x) =IIj=l (I) = 0 and Y,,,, = “PI ( 1  -j/2N) = 0. Nx I 
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